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1. Einleitung

Polymorphe DNA existiert in einer Vielfalt von ver-
schiedenen Konformationen.[1] Duplex-DNA kann in einer
Reihe von sequenzabh$ngigen Sekund$rstrukturen vorliegen,
die von der (blichen rechtsg$ngigen B-Form bis zur links-
g$ngigen Z-Form reichen.[2,3] Triplex- und Tetraplex-DNA-
Strukturen sind ebenfalls bekannt.[3–5] Abbildung 1 zeigt die
charakteristischen Unterschiede der verschiedenen DNA-
Strukturen: der A-, B- und Z-Formen, des durch ein Protein
induzierten DNA-Knicks und der G-Quartett-Struktur. Diese
Konformationen sind vermutlich entscheidend f(r biologi-
sche Prozesse wie DNA-Replikation, Genexpression und
-regulierung oder die Reparatur besch$digter DNA.[6,7] Zum
Beispiel sch(tzt die DNA menschlicher Telomere, die G-
Quartett(Quadruplex)-Strukturen bildet, Zellen vor Re-
kombination und Abbau.[7, 8] Wird die Wirkung der Telomere
gest<rt, so kommt es schließlich zum Zelltod; dies kann the-

rapeutisch zur Krebsbehandlung ge-
nutzt werden.[8–14] K(rzlich untersuch-
ten Rich und Mitarbeiter die biologi-
sche Bedeutung der Z-DNA n$her und
berichteten, dass die Doppelstrang-
RNA-abh$ngige Adenosin-Desamina-
se (ADAR1), das tumorassoziierte
Protein DLM-1 und das Protein E3L

des Vaccinia-Virus spezifisch an die Z-Form der DNA bin-
den.[6] Weiterhin haben Liu et al. den Beweis daf(r geliefert,
dass die Z-DNA bildenden Sequenzen f(r die Chromatin-
abh$ngige Aktivierung des Promotors CSF1 (colony-stimu-
lating factor 1) notwendig sind.[15] Neben der Funktion der
DNA-Struktur selbst, induziert die Bindung eines Tran-
skriptionsfaktors, wie eines TATA-Box bindenden Proteins,
eine deutliche Biegung der DNA, die als Voraussetzung f(r
die Transkription betrachtet wird.[16–22] Aus diesen Gr(nden
ist die Untersuchung der lokalen Konformations$nderungen
von DNA bei biologischen Prozessen f(r das Verst$ndnis der
DNA-Funktion unerl$sslich.

Methoden wie R<ntgenkristallstrukturanalyse[23] und
NMR-Spektroskopie[24, 25] liefern Daten mit atomarer Aufl<-
sung zur DNA-Struktur. Auch Circulardichroismus und Ra-
man-Spektroskopie k<nnen zur Untersuchung von DNA-
Strukturen herangezogen werden. Diese Methoden arbeiten
mit DNA-Modellsystemen wie synthetischen Oligonucleoti-
den oder Homopolymeren, sie liefern jedoch keine Infor-
mationen zu lokalen Konformations$nderungen, sondern nur
zur durchschnittlichen Konformation in einer Probe. Dar(ber
hinaus k<nnen diese Verfahren nicht zur direkten Untersu-
chung lokaler DNA-Strukturen in lebenden Zellen eingesetzt
werden. Verschiedene chemische Sonden und Antik<rper
wurden entwickelt, diese Methoden erfordern jedoch in der
Regel die Isolierung der DNA aus dem Zellkern.

Den verschiedenen Konformationen der DNA – den A-, B- und Z-
Formen, dem proteininduzierten DNA-Knick und der G-Quartett-
Struktur – werden bedeutende Rollen in biologischen Prozessen zu-
geschrieben, etwa bei der DNA-Replikation, der Genexpression und
-regulierung und der Reparatur besch,digter DNA. Die Untersuchung
von lokalen DNA-Konformations,nderungen bei biologischen Vor-
g,ngen ist daher f0r die Aufkl,rung der Funktion von DNA unum-
g,nglich. In diesem Kurzaufsatz beschreiben wir die Anwendung der
photochemischen Dehalogenierung von 5-Halogenuracil-derivatisier-
ter DNA zur Untersuchung von DNA-Strukturen. Die Wasserstoff-
abstraktion durch das Uracil-5-yl-Radikal verl,uft atomspezifisch und
wird stark von der DNA-Struktur bestimmt. Infolgedessen k4nnte
diese photochemische Methode bei der Untersuchung von DNA-
Konformationen in lebenden Zellen zum Einsatz kommen.
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Licht einer geeigneten Wellenl$nge kann durch Fokus-
sierung auf eine bestimmte Stelle in eine Zelle eindringen. Da
DNA in der Zelle vermutlich sehr schnell ihre Konformation
$ndert, w$re eine Methode von großem Nutzen, die auf der
DNA-Photoreaktion beruht und die DNA-Konformation in
vivo fixieren kann. Die Produkte der Photoreaktion sollten
Aufschluss geben (ber lokale Konformations$nderungen in
bestimmten DNA-Sequenzen w$hrend der Bestrahlung. In
diesem Kurzaufsatz beschreiben wir die Photoreaktivit$ten
von 5-Halogenuracil in f(nf charakteristischen lokalen DNA-
Strukturen: den A-, B- und Z-Formen, dem proteininduzier-
ten DNA-Knick und der G-Quartett-Struktur (Abbildung 1).
Die Wasserstoffabstraktion in DNA durch ein Uracil-5-yl-
Radikal, das durch UV-Bestrahlung der 5-Halogenuracil-
Einheit entsteht, verl$uft atomspezifisch und h$ngt stark von
der DNA-Struktur ab. Diese photochemische Methode gibt
die Struktur der DNA wieder, und daher k<nnte sie zur Un-
tersuchung von DNA-Konformationen in lebenden Zellen
eingesetzt werden.

2. Konkurrierende 1’- und 2’a-Wasserstoffabstraktion
durch das Uracilyl-Radikal in B-DNA

Thymin (T) kann in DNA durch 5-Halogenuracil (BrU
oder IU) ersetzt werden, wobei die Funktion der resultie-
renden 5-Halogenuracil-substituierten DNA in vivo erhalten
bleibt. Der Einbau von 5-Halogenuracil steigert die Licht-
empfindlichkeit der Zelle hinsichtlich DNA-Protein-Vernet-
zung, DNA-Strangbr(chen und der Erzeugung von basenla-
bilen Stellen durch die Bildung von Uracilyl-Radikalen bei
Bestrahlung.[26–29] Daher gingen wir davon aus, dass die Pho-
toreaktivit$t von 5-Halogenuracil zur Untersuchung der lo-
kalen Konformation von DNA dienen kann. Wir begannen
unser Projekt zur Aufkl$rung der Struktur von DNA-L$sio-
nen mit der genauen Analyse der Produkte nach Bestrahlung
von 5-Halogenuracil-substituierten Hexanucleotiden. Die
Bestrahlung der selbstkomplement$ren B-Duplexe d-
(GCABrUGC)2 und d(GCA

IUGC)2 f(hrte unter Freisetzung
von Adenin zu Desoxyribonolacton 1 als C1’-Oxidations-
produkt und zum hexameren Produkt 2 mit einer Erythrose-
Einheit als C2’-Oxidationsprodukt (Schema 1).[27–29] Durch
die Verwendung eines Oligonucleotids, das an C2’ des Des-
oxyribose-Rests stereospezifisch deuteriert war, identifizier-
ten wir die Abstraktion des 2’a-Wasserstoffatoms der Des-
oxyribose-Einheit durch das Uracilyl-Radikal als den ge-
schwindigkeitsbestimmenden Schritt bei der Bildung des C2’-
Oxidationsprodukts 2.[29] Die Ergebnisse zeigen deutlich, dass
das Uracilyl-Radikal sowohl das 1’- als auch das 2’a-Wasser-
stoffatom der Desoxyribose-Einheit am Adenin auf der 5’-
Seite abspalten kann.

W$hrend die Bestrahlung von d(GCABrUGC)2 zur effi-
zienten Bildung der C1’- und C2’-Oxidationsprodukte f(hrte,
zeigten Hexanucleotide ohne ABrU-Sequenz, wie 5’-d-
(GCGBrUCG)-3’/5’-d(CGACGC)-3’, eine geringe Photore-
aktivit$t. Aufgrund dieser Ergebnisse stellten wir zun$chst
einen Mechanismus auf, bei dem ein sequenzspezifischer
Elektronentransfer vom benachbarten Adenin-Rest an der 5’-
Seite zum BrU in der Duplex-Struktur ein BrU-Radikalanion
erzeugt, das durch Eliminierung des Bromid-Ions ein Ura-
cilyl-Radikal bildet. Dieses Radikal spaltet dann das C1’-
Wasserstoffatom des Desoxyadenosins ab. Die anschließende
Oxidation des C1’-Radikals durch das Adenin-Radikalkation
f(hrt (ber ein C1’-Kation zum Ribonolacton. Diese Selekti-
vit$t wurde von einer anderen Forschergruppe best$tigt.[30]

Da jedoch Guanin als Nucleobase st$rker elektronenschie-
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Abbildung 1. StrukturabhBngige, atomspezifische Wasserstoffabstrak-
tion in verschiedenen lokalen DNA-Strukturen durch das Uracilyl-Radi-
kal, das aus 5-Halogenuracil unter UV-Bestrahlung gebildet wird.
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bend wirkt, sprach man von einer „kontra-
thermodynamischen“ Reaktion („contrather-
modynamic reaction“).[30] K(rzlich wurde BrU
als molekulare Sonde f(r den Mberschuss-
elektronentransfer eingesetzt.[31] Wir unter-
suchten den Elektronentransfer entlang der
DNA unter Verwendung von DNA, die ein-
heitlich mit 5-Halogenuracil substituiert
war.[32] Durch PCR erhielten wir 450-bp-DNA-
Fragmente, in denen alle Thymin-Reste gegen
BrU oder IU ausgetauscht waren. Die DNA-
Fragmente wurden mit monochromatischem
UV-Licht (l= 302 nm) bestrahlt und dann auf
Sequenzgelen analysiert. Mberraschenderwei-
se wurden erst nach Hitzebehandlung spezifi-
sche Spaltungen an den 5’-(G/C)AAXUXU-3’-
und 5’-(G/C)AXUXU-3’-Sequenzen der BrU-
and IU-DNA-Fragmente beobachtet. Die
HPLC-Analyse der Oligonucleotid-Produkte
ergab, dass Ribonolacton-haltige Octamere als
Hauptprodukte entstanden waren. Bei Be-
strahlung der Oligonucleotide in H2

18O wur-
den 18O-Atome in den Ribonolacton-Teil eingebaut, was be-
weist, dass das Carbonyl-Sauerstoffatom von Ribonolacton
aus H2O stammt. Ausgehend von diesen Beobachtungen
schlugen wir einen m<glichen Mechanismus f(r die Photo-
reaktionen an 5’-GAAXUXU-3’-Sequenzen vor (Abbil-
dung 2).

Dieser Mechanismus beginnt mit dem Elektronentransfer
vom Guanin durch gestapelte AA- und A-Einheiten zum
elektronenarmen XUXU-Abschnitt.[33] Die Freisetzung des
Halogenid-Ions aus dem XUXU-Radikalanion f(hrt zu Ura-
cilyl-Radikalen, die das Wasserstoffatom am C1’ der Ade-
nosin-Einheit neben dem XUXU-Abschnitt abspalten. Die
Einelektronenoxidation des C1’-Radikals von Desoxyadeno-
sin (dA) durch das Guanin-Radikalkation regeneriert Guanin
und f(hrt zu einem C1’-Kation. Die Adeninbasen zwischen
Guanin und dem XUXU-Abschnitt bilden in diesem Modell
eine Br(cke zwischen dem Elektronendonor Guanin und
dem Elektronenacceptor XUXU, die durch Ladungstrennung

einem schnellen Elektronenr(cktransfer vorbeugt. Die zuvor
beobachtete Sequenzspezifit$t f(r ABrU kann dadurch erkl$rt
werden, dass Adenin dieselbe Rolle spielt.

3. Selektive 1’-Wasserstoffabstraktion in A-DNA

Nach der Photoreaktion des DNA-RNA-Hybrids 5’-d-
(CGAIUGC)-3’/5’-r(GCAUCG)-3’, das die A-Struktur an-
nimmt, zeigte eine Analyse des Lysats, dass 1 durch selektive
1’-Oxidation unter Freisetzung von Adenin als ein Haupt-
produkt entstanden war (Abbildung 3a).[34] Ohnliche Ergeb-
nisse wurden f(r BrU-substituierte DNA-RNA-Hybride und
DNA-Oligomere erhalten.[28,29,34] 1H-NMR-NOE-Experi-
mente mit 5’-d(CGAUGC)-3’/5’-r(GCAUCG)-3’ und 5’-d-
(CGAUGC)-3’/5’-d(GCATCG)-3’ deuten darauf hin, dass
zwischen den Abst$nden und der Selektivit$t der Wasser-
stoffabstraktion kein Zusammenhang besteht. Um die se-

Schema 1. Konkurrierende Wasserstoffabstraktion an den C1’- und C2’-Positionen in B-DNA. X=Br, I; G=Guanin, C=Cytosin, A=Adenin,
U=Uracil.

Abbildung 2. Vorgeschlagener Mechanismus fHr die photochemische Reaktion an 5’-(G/
C)AAXUXU-3’-Sequenzen.
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lektive Wasserstoffabstraktion zu erkl$ren, wurden m<gliche
Mbergangszust$nde f(r den Vorgang in einem DNA-Duplex
und einem DNA-RNA-Hybrid aufgestellt, und es wurde be-
rechnet, wieviel Konformationsenergie zum Erreichen dieses
Mbergangszustands ben<tigt wird.[34] Ein neuer Parameter-
satz f(r den Mbergangszustand derWasserstoffabstraktion f(r
das AMBER-Kraftfeld wurden mithilfe von Ab-initio-Mo-
lek(lorbitalrechnungen der Wasserstoffabstraktion in Etha-
nol durch Vinylradikale entwickelt. Im DNA-RNA-Hybrid
hatte der C1’-Mbergangszustand die niedrigste Energie, was
die beobachtete C1’-Selektivit$t erkl$rt. Abbildung 3b zeigt
die berechnete Struktur des AU-Abschnitts, der den m<gli-
chen Mbergangszustand der C1’-Wasserstoffabstraktion im
DNA-RNA-Hybrid enth$lt. Anders als bei der A-Form, bei
der das C1’-Radikal st$rker stabilisiert ist als das C2’-Radikal,
sind die C1’- und C2’-Radikale der B-Form energetisch un-
gef$hr gleich.[29] Dies k<nnte erkl$ren, warum die Wasser-
stoffabstraktionen an C1’ und C2’ konkurrierende Prozesse
sind. Obgleich eine genauere Beschreibung der Wasserstoff-
abstraktion dynamische Eigenschaften der betreffenden
Nucleins$uren einschließen sollte, bieten die Ergebnisse eine
qualitative Erkl$rung f(r die konformationsabh$ngige Was-
serstoffabstraktion durch das Uracil-5-yl-Radikal in einem
DNA-Duplex und einem DNA-RNA-Hybrid.

In einem Monomermodell lieferte die Reaktion des 2’-
Desoxyuridin-1’-yl-Radikals mit molekularem Sauerstoff das
Peroxyl-Intermediat, das schließlich (ber das C1’-Kation zur
Bildung des 2’-Desoxyribonolactons f(hrte.[35–37] Es steht noch
nicht fest, woher das Sauerstoffatom des Ribonolactons in A-
DNA stammt, wahrscheinlich ist aber das Peroxyl-Interme-
diat an der Bildung des 2’-Desoxyribonolactons beteiligt.

4. Stereospezifische 2’a-Hydroxylierung
in Z-DNA

Die Z-Form ist eine der charakteristischen lo-
kalen DNA-Strukturen, die durch R<ntgenkristal-
lographie aufgekl$rt wurden; sie wurde hinsichtlich
Transkription,[38,39] Methylierung von Cytosin[40]

und Mberspiralisierung[41–43] ausgiebig untersucht.
Die biologische Bedeutung von Z-DNA wurde je-
doch noch nicht vollst$ndig erfasst, was vermutlich
auf ihrer kurzen Lebensdauer unter Torsionsspan-
nung durch das Entwinden des Doppelstranges
w$hrend der Transkription beruht. Um die Was-
serstoffabstraktion durch das Uracilyl-Radikal in
Z-DNA zu untersuchen, m(ssen zun$chst bei phy-
siologischen Salzkonzentrationen stabile Z-Oligo-
nucleotide experimentell zug$nglich gemacht wer-
den. Beispielsweise verbleibt das Duplex-Desoxy-
octadecamer d(Gm5C)4A

BrU(Gm5C)4, das in der
Mitte einen ABrU-Abschnitt aufweist, selbst in ei-
ner 4m NaCl-L<sung in der typischen B-Form.
Verschiedene modifizierte Guanin-Einheiten wur-
den in die Duplex-Nucleotide eingebaut, um ihre
F$higkeit zur Stabilisierung von Z-DNA zu pr(fen.
In dieser Hinsicht erwies sich der Einbau von 8-
Methyl-2’-desoxyguanosin (m8G)[44] und 8-Methyl-
guanosin (m8rG)[45] als besonders wirksam. Die
Entwicklung des monomeren Z-Stabilisators er-

m<glichte die Aufkl$rung der photochemischen Reaktion von
IU in Z-DNA. Wir stellten fest, dass bei UV-Bestrahlung (l=
302 nm) des Ioduracil-substituierten Z-DNA-Duplex 5’-
d(CGCGIUGCG)-3’/5’-d(Cm8GCACm8GCG)-3’ eine 2’a-
Hydroxylierung stattfand (Schema 2).[46] Die stereospezifi-
sche 2’b-Wasserstoffabstraktion, die zur 2’a-Hydroxylierung
und zum Produkt 3 f(hrte, wurde mithilfe eines stereospezi-
fisch deuterierten Octanucleotids in Z-DNA nachgewiesen.
Da die 2’a-Hydroxylierungsstelle in der DNA leicht durch
Ribonuclease T1 hydrolysiert wird, eignet sich eine Folge aus
photochemischer Hydroxylierung und enzymatischer Hy-
drolyse f(r den Nachweis von Z-DNA-Regionen (Schema 2).

Rich und Mitarbeiter berichteten k(rzlich, dass ver-
schiedene Proteine, einschließlich der ubiquit$ren Doppel-
strang-RNA-abh$ngigen Adenosin-Desaminase (ADAR1),
spezifisch an Z-DNA binden.[47,48] Die hohe Affinit$t gegen-
(ber Z-DNA geht dabei auf die Bindung von Za, dem NH2-
Terminus von ADAR1, zur(ck.[49] Wir untersuchten die
photochemische Reaktion einer derart Za-induzierten Z-
DNA: Die 2’a-Hydroxylierung erfolgte stereospezifisch an
der 5’-Seite von IU. In der R<ntgenkristallstrukturanalyse des
Za-d(CGCGCG)2-Komplexes ist das C2’b-Wasserstoffatom
der Desoxyribose am Guanin an der 5’-Seite in unmittelbarer
N$he zum Uracilyl-Radikal positioniert, w$hrend die C1’-
und C2’a-Wasserstoffatome weit entfernt von der C5-Position
des Uracilrests stehen (Abbildung 4).[49] Abbildung 4c zeigt
die berechnete Struktur des GBrU-Abschnitts, der den ange-
nommenen Mbergangszustand der C2’b-Wasserstoffabstrak-
tion in Z-DNA einschließt. Das fest in der Z-DNA einge-
schlossene Za (der C3’-endo-Zucker faltet das Guanin des
Duplex) f<rdert folglich die spezifische C2’b-Wasserstoffab-

Abbildung 3. a) Photochemische Produkte der Hexanucleotide in DNA-RNA-Hybri-
den mit A-Struktur durch selektive 1’-Wasserstoffabstraktion nach Bestrahlung mit
UV-Licht. b) Die Struktur des AU-Abschnitts fHr ein energieminimiertes Octamer
stellt den Kbergangszustand fHr die C1’-Wasserstoffabstraktion im DNA-RNA-Hy-
brid dar. c) VergrLßerte Ansicht eines AU-Abschnitts.
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straktion durch das Uracilyl-Radikal und schließt damit die
Oxidation an C1’ und C2’ aus.

5. Stranginterne Wasserstoffabstraktion an der
5-Methylgruppe von Thymin in proteininduzierten
DNA-Knicken

In den vergangenen zehn Jahren wurden aus den Kris-
tallstrukturen vieler DNA-Protein-Komplexe neue Erkennt-
nisse (ber DNA-Protein-Wechselwirkungen gewonnen. In
einigen F$llen verursacht die Bindung eines Proteins in der
DNA deutliche Konformations$nderungen, denen man eine
große biologische Bedeutung zumisst.[17–22] Beispielsweise
induziert das TATA-Box bindende Protein eine Biegung der
DNA, die erforderlich ist, um die Transkription auszul<sen.
Um den proteininduzierten DNA-Knick nachzuweisen, wur-
de die Photoreaktion der 5-Halogenuracil-substituierten
DNA in Gegenwart von Sso7d untersucht. Sso7d ist ein
thermisch und chemisch stabiles chromosomales Protein aus
dem hyperthermophilen Archaeabakterium Sulfolobus sol-
fataricus. Die Kristallstruktur des Komplexes aus Sso7d und
d(GTAATTAC)2 wurde mit hoher Aufl<sung ermittelt.

[50]

Das Protein bindet in der kleinen Furche und verursacht
durch Intercalation der hydrophoben Seitenketten von Val26
und Met29 einen 608-Knick am TpT-Abschnitt. Die Be-
strahlung von d(GTAATIUAC)2 ohne Sso7d erzeugte 1’- und
2’-Oxidationsprodukte und entsprach damit fr(heren Beob-
achtungen zur B-DNA. In Gegenwart von Sso7d wurde die
Bildung der beiden neuen Produkte 4 und 5 nachgewiesen
(Schema 3).[51] Diese Ergebnisse machen deutlich, dass der
proteininduzierte DNA-Knick eine Wasserstoffabstraktion
an der 5-Methylgruppe von Thymin im selben Strang verur-
sacht. Einer Kristallstrukturanalyse zufolge steht die 5-Me-
thylgruppe von Thymin in der N$he des Uracilyl-Radikals,
w$hrend sich die T5-1’- und T5-2’-Wasserstoffatome weit

enfernt vom benachbarten Uracilyl-Radikal befinden (Ab-
bildung 5). Wir folgern daraus, dass die ungew<hnliche
stranginterne Wasserstoffabstraktion am T5-Me durch das
Radikal genau an der strukturanalytisch lokalisierten Bie-
gungsstelle erfolgte.[51] Diese spezifische stranginterne Was-
serstoffabstraktion an einer Methylgruppe bietet eine effizi-
ente Methode zur direkten Detektion von DNA-Knicken in
L<sung.

Die HPLC-Analyse des bestrahlten d(GTAATIUAC)2-
Sso7d-Komplexes zeigte ebenfalls, dass das Protein Sso7d zu
Sso7dOH oxidiert wurde. Durch Umsetzung mit Lysyl-En-

Abbildung 4. a) Kristallstruktur des Za-d(CGCGCG)2-Komplexes und
b) eine vergrLßerte Ansicht einer 5’-GC-3’-Region. Das Kohlenstoff-
atom in 5-Position von Uracil ist rot und die abspaltbaren Wasserstoff-
atome der Desoxyribose in Guanosin sind gelb dargestellt. c) Der
GBrU-Abschnitt einer energieminimierten Z-DNA-Struktur zeigt den
postulierten Kbergangszustand der C2’b-Wasserstoffabstraktion.

Schema 2. Bestrahlung von d(CGCGXUGCG)/d(Cm8GCACm8GCG) mit UV-
Licht in Gegenwart von Za (2 Oquiv. bezogen auf DNA). Die spezifische
2’b-Wasserstoffabstraktion fHhrt zur 2’a-Hydroxylierung, an die sich der
enzymatische Verdau des hydroxylierten Produkts mit Ribonuclease T1 an-
schließt. X=Br, I.
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dopeptidase erfolgte die Oxidation haupts$chlich zwischen
den Einheiten 29 und 40 (78%). Die Position der oxidierten
Aminos$urereste im Fragment 29–40 wurde durch „Post-
source-decay“-Massenspektrometrie (PSD-MS/MS) ermittelt
(Abbildung 6). W$hrend in beiden F$llen das Fragment y11
erhalten wurde, fand man nach der Oxidation das Frag-
ment b2 anstelle des unver$nderten Fragments 29–40. Es
findet also eine spezifische Photooxidation des d(GTAA-
TIUAC)2-Sso7d-Komplexes an Met29 statt. Aus der R<nt-
genkristallstruktur wird ersichtlich, dass sich der Met29-Rest
in der N$he des Uracilyl-Radikals befindet, das in die große
Furche an der Biegungsstelle intercaliert. Diese Ergebnisse
deuten darauf hin, dass die Wechselwirkungen zwischen
DNA und Sso7d in L<sung und im Kristall im Wesentlichen
gleich sind.

6. Hoch effiziente photochemische Bildung von
2’-Desoxyribonolacton im antiparallelen G-Quartett

DNA-Tetraplexe (DNA-Quadruplex, G-Quartette) sind
vierstr$ngige Strukturen aus guaninreichen DNA-Sequen-
zen.[52–54] Auch wenn G-Quartette bisher nur in vitro unter-
sucht wurden, steigt das Interesse wegen ihrer m<glichen
Beteiligung an biologischen Prozessen. Die DNA der
menschlichen Telomere besteht aus wiederholten Einheiten
mit TTAGGG-Nucleotidsequenz und endet in einem einzel-
str$ngigen Abschnitt, der am Ende der doppelstr$ngigen
DNA-Helix (berh$ngt. Die einzelstr$ngigen Wiederho-
lungseinheiten k<nnen vierstr$ngige G-Quartett-Strukturen
bilden.[55–57] Eine NMR-spektroskopische Analyse zeigte, dass
ein 22-mer von 5’-d[AGGG(TTAGGG)3]-3’ in L<sung in
Gegenwart von Na+-Ionen eine antiparallele G-Quartett-
Struktur annimmt. In dieser Struktur sind die gegen(berlie-

genden GGG-Str$nge antiparallel, und die TTA-Einheiten
bilden eine diagonale und zwei seitliche Schleifen (Abbil-
dung 7).[58] In einem Kristall, der in Gegenwart von K+-Ionen
gez(chtet wurde, nimmt dasselbe 22-mer dagegen eine andere
Struktur ein: Hier sind vier parallele GGG-Einheiten durch
drei Schleifen an der Außenseite des G-Quartetts verbun-
den.[59]

Zur Untersuchung der strukturabh$ngigen Abstraktion
von Wasserstoffatomen in parallelen und antiparallelen G-
Quartett-Strukturen wurden sechs Oligodesoxynucleotide

Abbildung 5. a) Kristallstruktur des bestrahlten Sso7d-d(GTAATIUAC)2-
Komplexes und b) eine vergrLßerte Ansicht des Reaktionszentrums. In
(a) sind die intercalierten Met29- und Val26-Einheiten gelb dargestellt ;
in (b) sind die Einheiten U6 und T5 von d(GTAATUAC)2 blau, das Koh-
lenstoffatom in 5-Position von U6 ist rot und die vermutlich abspaltba-
ren Wasserstoffatome von Thymin sind weiß dargestellt.

Abbildung 6. Sequenz des Fragments 29–40 von Sso7d. Nach der Oxi-
dation fand man das Fragment b2 anstelle des unverBnderten Frag-
ments 29–40; das Fragment y11 wurde ohne Modifikation ebenso er-
halten wie nach der Oxidation.

Schema 3. Bestrahlung von (GTAATIUAC)2-Sso7d mit UV-Licht. Die Bil-
dung neuer Produkte weist auf eine stranginterne Wasserstoffabstrakti-
on an der 5-Methylgruppe von Thymin hin.

DNA-Strukturen
Angewandte

Chemie

1385Angew. Chem. 2006, 118, 1380 – 1389 � 2006 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim www.angewandte.de

http://www.angewandte.de


(ODN 1–6) erhalten, indem jeweils eine der sechs Thymin-
Einheiten in der 22-mer-DNA 5’-d(AGGGT1T2-
AGGGT3T4AGGGT5T6AGGG)-3’ der menschlichen Telo-
mere gegen IU ausgetauscht wurde.[60] Bei Bestrahlung mit
UV-Licht reagierten (ber 60% des antiparallelen ODN 4, in
dem IU anstelle von T4 in der Mitte der diagonalen Schleife
vorlag; die parallelen ODNs 1–6 zeigten dagegen unter
denselben Bestrahlungsbedingungen keine Photoreaktion
(< 2%). Die Produktanalyse nach der Bestrahlung von
ODN 4 im antiparallelen G-Quartett zeigte, dass 2’-Desoxy-
ribonolacton unter Freisetzung von Thymin gebildet worden
war (Abbildung 8).

Die große photochemische Reaktivit$t von ODN 4 im
antiparallelen G-Quartett und seine schlechte Photoreakti-
vit$t in der parallelen Struktur kann durch Vergleich der
Schleifen-Regionen der beiden Strukturen erkl$rt werden
(Abbildung 9).[58, 59] Im parallelen G-Quartett schiebt sich ei-
ne Adenin-Base einer $ußeren TTA-Schleife zwischen die
beiden Thymin-Einheiten und verhindert so die Wasser-
stoffabstraktion. Eine solche Intercalation der Adenin-Base
der diagonalen Schleife tritt in der antiparallelen G-Quartett-
Struktur hingegen nicht auf, sodass die 1’-Wasserstoffab-
straktion durch das Uracilyl-Radikal in der Schleife m<glich
ist. Dar(ber hinaus haben NMR-Experimente gezeigt, dass
das Uracilyl-Radikal dem 1’-Wasserstoffatom des benach-

barten T3 n$her ist als den anderen Wasserstoffatomen in der
diagonalen Schleife.

Auch f(r andere guaninreiche Sequenzen wird ange-
nommen, dass ihre biologische Funktion auf der Bildung ei-
nes G-Quartetts beruht. So wurden G-Quartette mit der
ortsspezifischen genetischen Rekombination in Immunglo-
bulin(IgG)-Switch-Regionen, der Insulin-Gen-gebundenen
polymorphen Region, dem Retinoblastom-Suszeptibilit$ts-
gen (Rb) und dem c-myc-Onkogen in Verbindung ge-
bracht.[61–64] Zahlreiche Sequenzen, die ein G-Quartett bilden
k<nnten, wurden in vielen wichtigen Genen identifiziert.[65]

Das Sequenzmotiv f(r stranginterne G-Quartette kann als
GnNm1GnNm2GnNm3Gn dargestellt werden; darin ist n die

Abbildung 8. Das IU-Motiv in der diagonalen Schleife des antiparallelen
G-Quartetts geht sehr leicht eine Photoreaktion zu einem 2’-Desoxyribonolac-
ton ein. Im parallelen G-Quartett findet diese Reaktion dagegen nicht statt.

Abbildung 9. Struktur des bestrahlten Oligonucleotids d(AGGGT-
TAGGGTIUAGGGTTAGGG) entsprechend RLntgenkristallographie
(ODN 4; K+-Form) und NMR-Experimenten (Na+-Form) sowie vergrL-
ßerte Ansichten der Schleifen-Regionen. Guanin-Einheiten sind blau,
das Kohlenstoffatom C5 von Uracil ist violett, die abspaltbaren Was-
serstoffatome von Thymin sind cyanblau, Thymin ist rot, Uracil gelb
und Adenin grHn dargestellt.

Abbildung 7. Gefaltete Strukturen von [AG3(T2AG3)3]: a) In der K
+-stabi-

lisierten Kristallstruktur umschließen Bußere TTA-Schleifen die Seiten
des G-Quartetts und die parallelen GGG-StrBnge. b) Die Na+-stabili-
sierte Struktur in LLsung mit einer diagonalen und zwei seitlichen
TTA-Einheiten.
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Anzahl der Guanin-Tetraden, und m1, m2 und m3 sind die
L$ngen der Schleifen. Die diagonale Schleife (Nm2) der anti-
parallelen Strukturen ist dem Sequenzmotiv gemeinsam
(Abbildung 10a). Wir (berpr(ften die photochemische Me-
thode, indem wir die Photoreaktionen von IU-substituierten
IgG-Switch-Regionen und 5’-Termini des Rb-Gens unter-
suchten.[60] Nach der Bestrahlung von 5’-d(AGGG-
GAGCTGGGGIUAGGTGGGA)-3’ (IgG) und 5’-
d(CGGGGGGTTIUTGGGCGGC)-3’ (Rb) bei l= 302 nm
zeigte die HPLC-Analyse der Photolysate, dass es sich bei
den Photoprodukten (ca. 90% Ausbeute) haupts$chlich um
Oligomere handelte, die 2’-Desoxyribonolacton enthielten
und unter Freisetzung von Guanin oder Thymin gebildet
wurden. Diese effiziente Bildung von 2’-Desoxyribonolacton
weist darauf hin, dass die guaninreichen Sequenzen in einer
antiparallelen G-Quartett-Struktur mit einer diagonalen
Schleife vorliegen. Abbildung 10b und c zeigen G-Quartett-
Strukturen f(r IgG bzw. Rb mit zwei gestapelten Guanin-
Tetraden und einer diagonalen Schleife aus vier Basen, wie sie
entsprechend unseren photochemischen Untersuchungen
aufgestellt werden k<nnen. Abbildung 10. Allgemeines Aufbauschema fHr G-Quartette: Vier gua-

ninreiche Sequenzen Gn bilden durch WasserstoffbrHcken Tetraden, die
sich dann zum Stamm des G-Quartetts stapeln. a) 1, 2 und 3 bilden
die drei Schleifen. b,c) Schematische Darstellung der K+-induzierten
G-Quartette von IgG (b) und Rb (c).

Schema 4. Produkte der Wasserstoffabstraktion aus den fHnf verschiedenen Strukturen der 5-Halogenuracil enthaltenden DNA nach Bestrahlung
mit UV-Licht.
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7. Zusammenfassung und Ausblick

Die Wasserstoffabstraktion in DNA durch Uracil-5-yl-
Radikale, die sich bei der UV-Bestrahlung aus 5-Halogen-
uracil bilden, verl$uft atomspezifisch und wird stark von der
DNA-Konformation beeinflusst (Schema 4). In B-DNA
wurden konkurrierende 1’- und 2’a-Wasserstoffabstraktionen
beobachtet, in DNA-RNA-Hybriden mit A-Struktur fand
hingegen eine selektive 1’-Wasserstoffabstraktion statt. In der
Z-DNA verursachte die stereospezifische 2’b-Wasserstoffab-
straktion eine 2’a-Hydroxylierung. In proteininduzierten
DNA-Knicken f(hrte die Bestrahlung zur stranginternen
Wasserstoffabstraktion an der 5-Methylgruppe von Thymin in
5’-Richtung. In Ioduracil-haltiger Telomer-DNA bestimmt
die Ausrichtung des G-Quartetts die Photoreaktivit$t: Die 2’-
Desoxyribonolacton-Einheit wird nur in der diagonalen
Schleife des antiparallelen G-Quartetts gebildet. Diese Un-
tersuchungen veranschaulichen die Beziehung zwischen der
lokalen DNA-Struktur und dem Produkt der Photoreaktion
und verdeutlichen, wie hoch das Potenzial dieser photoche-
mischen Methode f(r die Analyse der DNA-Struktur einzu-
sch$tzen ist. Bei Bestrahlung mit UV-Licht entstehen in DNA
haupts$chlich zwei Arten von Photoaddukten: Cyclobutan-
Dimere und das (6-4)-Photoprodukt.[66] Die ligationsvermit-
telte Polymerasekettenreaktion (LMPCR) ist ein wertvolles
Verfahren zur Detektion dieser Produkte in vivo.[67] Da 5-
Halogenuracil-substituierte DNA in lebenden Zellen wie
E. coli funktionsf$hig ist, k<nnen ihre photochemischen Re-
aktionen wichtige Informationen zu lokalen DNA-Konfor-
mationen in vivo bereitstellen.
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